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STRUCTURAL EMBEDDINGS: MECHANIZATION WITH METHOD

C�ESAR MU~NOZ� AND JOHN RUSHBYy

Abstract. The most powerful tools for analysis of formal speci�cations are general-purpose theorem

provers and model checkers, but these tools provide scant methodological support. Conversely, those ap-

proaches that do provide a well-developed method generally have less powerful automation. It is natural,

therefore, to try to combine the better-developed methods with the more powerful general-purpose tools.

An obstacle is that the methods and the tools often employ very di�erent logics.

We argue that methods are separable from their logics and are largely concerned with the structure and

organization of speci�cations. We propose a technique called structural embedding that allows the structural

elements of a method to be supported by a general-purpose tool, while substituting the logic of the tool

for that of the method. We have found this technique quite e�ective and we provide some examples of its

application. We also suggest how general-purpose systems could be restructured to support this activity

better.

Key words. semantic embeddings, formal notations, general veri�cation systems, speci�cation languages

Subject classi�cation. Computer Science

1. Introduction. In recent years, the capabilities of theorem provers oriented towards support of

formal methods (we call them veri�cation systems) have increased enormously. Systems such as ACL2

[24], Coq [5], Eves [42], HOL [14], Isabelle [36], and PVS [31] each come with a very rich speci�cation

language and a battery of decision procedures and proof strategies highly tuned to their logic. Some also

provide convenient access to model checkers or to specialized decision procedures through built-in embeddings

and interpretations, and some are able to generate e�ciently executable code. This integration of rich

speci�cation languages with powerful automation allows general-purpose veri�cation systems to attack very

complex problems in a broad spectrum of domains [40].

A commonly-cited drawback to the use of these systems, is their lack of methodological support for the

global process of speci�cation and software development: with their emphasis on deductive support, the

overall structure of a development is relegated to an external (informal or formal) methodology with little

automated support. For this reason, some people complain that there is little method in formal methods.

On the other hand, formal notations such as B [1], VDM [23], Z [44], and the requirements methodologies

that employ tabular speci�cations [20,26,43] emphasize the methodological aspects of software speci�cation

and development. That is to say, they suggest how speci�cations should be structured and organized, how

di�erent speci�cations should be related to each other and to executable programs, and what theorems (i.e.,
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\proof obligations") should be posed and proved in order to gain con�dence in a speci�cation or in the

correctness of a re�nement. These methods provide a formal notation and sometimes provide automated

support for their methodological aspects, but usually their logic is supported only by relatively limited and

specialized theorem provers, so that it can be tedious to discharge proof obligations, and di�cult to establish

properties of the overall speci�cation.

It is natural to ask whether the complementary strengths of general-purpose veri�cation systems and

of the more methodical formal notations can be combined in some way. One way to do this is by a seman-

tic embedding of the formal notation within the logic of the veri�cation system. Two variants have been

identi�ed: deep and shallow embeddings [10].

In a deep embedding, the language and semantics of the method are fully formalized as an object in

the logic of the speci�cation language. In this case, it is possible to prove meta-theoretical properties of the

embedded method, but the statement and proof of properties for a particular application require painful

encoding into the formalized semantics. In the shallow approach, there is a syntactic translation of the

objects of the method into semantically equivalent objects in the language of the veri�cation system. In this

case, meta-theoretical properties cannot be stated, but the encoding and analysis of particular applications

is simpler.

Both of these approaches consider the formal notation as a unity and do not separate method from logic.

This is consistent with the way most formal methods are presented|the methodological aspects of B, for

example, are described in terms of a certain set theory [1], and a certain logic of partial terms is introduced

to support the method of tabular speci�cations [34].

We question whether such unity|the tight coupling of method and logic|really is necessary. To our

thinking, the method-speci�c aspects tend to be at the outermost, or \structural" levels of the speci�cation

language, and are not very sensitive to the actual logic employed for expressions inside the structure. For

example, the tabular method employs tables to specify aspects of a system's requirements or behavior, but is

largely indi�erent to the logic in which table entries are speci�ed, provided that it possesses certain attributes

(e.g., an adequate treatment of partial functions).

Given this perspective, we propose a new kind of embedding, in which the structural part of a method

is embedded in the logic of the veri�cation system (by means of either a shallow or a deep embedding,

but most commonly the former), while the logic part of the method (its notation for expressions) is simply

replaced by that of the veri�cation system. By �tting the structural language elements of a method around

a well-supported logic, we get the best of both worlds, and quite cheaply. Of course, this will not satisfy

those who require the authentic language of a particular formal method, but it provides an attractive way to

support the \style" of such a method, or to add methodological discipline to the raw logic of a veri�cation

system.

In this paper we study this variation on embedding, which we call structural embedding. The paper is

organized as follows. We give an overview of the notions involved in this kind of embedding in Section 2

and we describe examples in Sections 3 and 4. The �nal section compares this approach with others,

and discusses how general-purpose veri�cation systems could be restructured to better support this type of

activity.

2. Structural Embedding. A formal method provides a speci�cation language, which is built on

a particular logic. Since formal methods are intended to organize formal speci�cations, the speci�cation

2



language is invariably structured in several syntactic levels. Usually, the outermost level concerns some notion

of \module" and relationships among these, while the innermost level provides the expression language.

Di�erent names are used for the top-level module constructs in di�erent speci�cation languages: for

example, machines in B, schemas in Z, theories in PVS. Speci�cation languages usually provide several

mechanisms to combine their modules in order to build large-scale systems. Most of the method in a formal

method is expressed at this level. For example, invariants may be speci�ed at the module level, giving

rise to proof obligations on the operations speci�ed within each module, or re�nement relationships may be

speci�ed across modules, giving rise to further proof obligations.

An embedding is a semantic encoding of one speci�cation language into another, intended to allow tools

for the one to be extended to the other. In our context, we are interested in embedding the speci�cation

language of a formal method into that of a veri�cation system. Using embeddings, the complementary

strengths of several formal methods and veri�cation systems can be combined to support di�erent aspects

of veri�ed software development.

The semantics of the language of a formal method can be encoded in a veri�cation system either by

using an extra-logical translation (i.e., a kind of compiler), in which case we speak of a shallow embedding; or

it can be de�ned directly in the speci�cation language of the veri�cation system, and in this case we talk of

a deep embedding [10]. In a structural embedding, which is orthogonal to both of these, only the outermost

level of the speci�cation language is embedded in the logic of the veri�cation system. The innermost level of

the speci�cation language is directly replaced, not embedded, by the expression language of the veri�cation

system. The logical framework of the embedded notation relies completely on the speci�cation language of

the veri�cation system.

We can describe the way this works as follows. Let LFM and LVS be the speci�cation languages of a

formal method and a veri�cation system, respectively. By language abuse, we use the same symbols for their

logics. We use the judgment S j=L P to mean that P is a property satis�ed by the speci�cation S in the

logic L. In these terms, a semantic embedding is a translation � : LFM 7! LVS satisfying

S j=LFM P ) LFM in LVS ^ S
� j=LVS P

�

where LFM in LVS is the set of axioms and de�nitions in LVS encoding the semantics of LFM. The shallow

or deep degree of the embedding depends on the information contained in LFM in LVS.

For a structural embedding, we consider that LFM consist of two sub-languages LFM = Lo
FM
[Li

FM
, where

Lo
FM

represents the outermost level of language, and Li
FM

represents the innermost one. First, we construct

L0
FM

= Lo 0
FM
[ LVS, which replaces the inner language by that of the veri�cation system and adjusts Lo

FM

(as Lo 0
FM
) to accommodate its new context while preserving its \intent." There is no formal relationship or

mechanical translation between LFM and L0
FM
|the goal is simply to preserve the ideas and intent of the

method to the extent possible.

A structural embedding is then a translation � : Lo 0
FM
7! LVS, which is extended to � : L0

FM
7! LVS in

the obvious way (as the identity on LVS) satisfying

S j=L0

FM
P ) Lo 0

FM
in LVS ^ S

� j=LVS P
�

where Lo 0
FM

in LVS is the set of axioms and de�nitions in LVS encoding the semantics of Lo 0
FM
. Notice that

the semantics of Li
FM

are not embedded, and that both of shallow and deep embedding are still possible for

Lo 0
FM
.
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To preserve intent in a structural embedding requires that well-formedness of speci�cations is preserved

in both logics. That is,

j=LFM SoundLFM(S) , L0
FM

in LVS j=LVS SoundLVS(S
�):

By SoundL(S), we mean the set of formulas (proof obligations) that guarantees some method-speci�c well-

formedness property of speci�cation S in logic L (e.g., the checks for overlapping or missing conditions

in a tabular speci�cation). Formal methods are often concerned with metalogical relationships between

speci�cations (e.g., that one should be a re�nement of another, or that one should be an invariant for the

other), and Sound is then extended to the proof obligations that ensure satisfaction of the desired relationship.

Notice that Sound is parameterized by the logic. In practice, we expect that Sound relies only on very general

properties of a logic, so that proof obligations retain their intuitive content under the structural embedding.

In the following two sections we present concrete examples of structural embeddings.

3. The B-Method in PVS. In this �rst example, we describe a structural embedding of the B-method

in the higher-order logic of PVS.

The B-method [1] is a state-oriented formal method mainly intended for development of sequential

systems. The underlying logic of the method is a set theory with a �rst-order predicate calculus. PVS [31]

is a veri�cation system whose speci�cation language is a higher-order logic with a type system. PVS does

not come with a particular built-in methodology.

3.1. An Overview of the B-Method. In B, speci�cations are structured in modules called machines.

Machines can be of three kinds: abstract machines, re�nements, and implementations. Each kind of machine

corresponds to a di�erent stage of software development. The initial speci�cation of a problem is given by a

set of abstract machines. Re�nements allows data rei�cation of speci�cations. Final re�nements, those that

are not intended to be re�ned anymore, are called implementations.

A machine is an abstract description of the statics and dynamics of a system. Statics are given by a

state declaration: constants, properties of the constants, variables, and an invariant (a property satis�ed

by the state of the machine). Dynamics are given by operations or services provided by the machine. In

contrast to other stated oriented methods, operations in B are not speci�ed by before-after predicates, but

by an equivalent mechanism of predicate transformers called generalized substitutions.

Large software development is supported using several composition mechanisms. These mechanisms give

di�erent access privileges to the operations or to the local variables of an external machine. In this way, it

is possible to build complex machines incrementally by using previously de�ned ones. Thus, by using the

uni�ed notation of machines, B supports the complete life cycle of software development.

Several cases studies of developments in B are reported in [7]. That work pointed out some drawbacks

of the B-method:

� Although typing conditions can be handled using the set theory provided by B, mathematical objects

such as variables or functions are not explicitly typed. In some cases this \free-typing" style obscures

the speci�cations.

� The generalized substitutions mechanism encourages the writing of algorithmic speci�cations. Some

kind of operations could be more naturally expressed by before-after predicates. The same conclusion

was drawn by Bicarregui and Ritchie in [8].

� Support for data types is limited. In particular, record types are absent in the B notation.
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� Proof obligations usually deal with type conditions that could be easily solved by a type checker.

� B imposes a very rigid discipline. For instance, parameters of a machine are restricted to be scalars

or uninterpreted sets. In some cases such restrictions seem to be very strong.

Most of these criticisms concern the limitation of the formal notation rather than the methodological

aspects of B. We argue that it is possible to separate the abstract machine mechanism from its speci�cation

language, and to use the expression language of PVS instead of that of B. In this way, we combine the best

features of each technique: the methodology of B, and the expressiveness and richness (and automation) of

the speci�cation language of PVS.

3.2. An Example: A Drinks Dispenser Machine. To concretize our ideas, we present in Figure 3.1

an example of a drinks dispenser speci�cation written in B by Leno and Haughton [25]. The speci�cation is,

for most of the parts, self-explanatory.

At �rst glance, the expressions of the machine Dispenser could be easily translated to PVS. For instance,

the invariant

dstate 2 DSTATE ^ given 2 NAT ^ given � lifetime

literally corresponds to the PVS expression

member(dstate,DSTATE) AND member(given,NAT) AND given <= lifetime.

However, the PVS speci�cation language is fully-typed while the B notation is not. For instance, although

it is possible to de�ne a set in PVS containing all the natural numbers, the normal way to handle a property

like given 2 NAT in PVS is by using a type declaration given:NAT|the natural numbers are a basic type

in PVS, whereas they are a prede�ned set in B.1 Thus, in PVS, the invariant is reduced to
given <= lifetime.

and its other two clauses become typing judgments.

In Figure 3.2 we present a fully typed version of the dispenser machine which uses the expression language

of PVS.

Notice also that PVS machines use a clause TYPES rather than the original clause SETS of B. From the

PVS point of view, DSTATE is not a set, but a type. Its role in the speci�cation is not that of a container,

but that of a typing tag. Also note that functions are not interpreted as binary relations in PVS, but as

computational objects.

3.3. Semantics. The semantics of the B-method is described in [1] in terms of a particular set theory

and a �rst-order logic. Roughly speaking the soundness of a speci�cation is given by the validity of a set of

axioms extracted from the machines. These axioms are usually called proof obligations. The more important

axioms concern the preservation of the invariant by the operations. In general, these proof obligations have

the form:

PROPERTIES ^ INVARIANT ) [OPERATION]INVARIANT.

As noted before, operations are de�ned in B as predicate transformers. Thus, for example, the proof

obligation concerning the initialization clause of the machine Dispenser states that after the initialization

of the machine, the invariant is satis�ed. Formally, it states that the following proposition holds:

1In fact, in B, NAT is the prede�ned set of naturals numbers between 1 and maxint, where maxinit is not known a priori.

PVS can also represent this as a type: subrange(1,maxint).
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MACHINE Dispenser(lifetime)

SETS

DSTATE = f stocked, unstocked g

CONSTANTS

ok, notok

PROPERTIES

ok = 0 ^ notok = 1

VARIABLES

dstate, given

INVARIANT

dstate 2 DSTATE ^ given 2 NAT ^ given � lifetime

INITIALIZATION

dstate := unstocked k

given := 0

OPERATIONS

restock =

dstate := stocked;

give_drink =

PRE dstate = stocked ^ given < lifetime THEN

dstate :2 DSTATE ||

given := given+1

END;

bb  � is_stocked =

IF dstate = stocked THEN

bb := ok

ELSE

bb := notok

END;

count  � number_given =

count := given

END

Fig. 3.1. A Drinks Dispenser in B
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Dispenser_in_PVS [ lifetime:nat ] : MACHINE

BEGIN

TYPES

DSTATE = fstocked, unstockedg

CONSTANTS

ok : nat = 0

notok : nat = 1

VARIABLES

dstate : DSTATE

given : nat

INVARIANT

given <= lifetime

INITIALIZATION

dstate := unstocked ||

given := 0

OPERATIONS

restock =

dstate := stocked

give_drink =

PRE dstate = stocked AND given < lifetime THEN

dstate :: DSTATE ||

given := given + 1

END

is_stocked : nat =

IF dstate = stocked THEN

ok

ELSE

notok

ENDIF

count : nat =

given

END Dispenser_in_PVS

Fig. 3.2. The Drinks Dispenser Machine Structurally Embedded in PVS
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ok = 0 ^ notok = 1 ) [dstate:=unstocked k given:=0]INVARIANT.

That is

ok = 0 ^ notok = 1 ) unstocked 2 DSTATE ^ 0 � lifetime,

which is trivially true.2

As pointed out before, a major di�erence between the speci�cations given in Figures 3.1 and 3.2 is that

PVS machines are based on the higher-order logic and type theory of PVS. In particular, a B machine is

embedded as a PVS theory, where the parameters and types of the machine become parameters and types

of the theory.

The state of a B machine is encoded in the functional style of PVS as follows. The variables of the

machine de�ne a record type, called the general type. Each �eld of the record corresponds to a variable

of the machine. The invariant of the machine is expressed as a subtype of the general type. In this way,

the mutual dependence between the variables given by the constraints is handled by the dependent type

mechanism of PVS.

The general type de�ned for Dispenser in PVS is

Dispenser_in_PVS_Type : TYPE = [#

dstate:DSTATE,

given:nat

#]

(Record types in PVS are declared by using the brackets [#,#]. Instances of a record type are given between

(#,#) parentheses. Record and function overriding are indicated in PVS by the WITH construct.)

The invariant of the machine is handled by the following type:

Dispenser_in_PVS : TYPE =

f self: Dispenser_in_PVS_Type | given(self) <= lifetime g

An operation op of a machine M with inputs i1:I1,...,in:In and outputs o1:O1,...,om:Om, is

translated into PVS as a function

op(i1:I1,...,in:In)(self:M):[o1:O1,...,om:Om,self out:M]. If op has no inputs and outputs, its

signature is simply op(self:M):M. For instance:

restock(self:Dispenser_in_PVS) : Dispenser_in_PVS =

LET self =

self WITH [

dstate := stocked

] IN

self

Generalized substitutions are interpreted as PVS expressions dealing with record �eld overriding, func-

tion updating, set operations, and typing conditions. Certain kinds of compositions are supported by using

the importing mechanism of PVS. The complete embedding is described in [28].

Soundness of a B machine corresponds to type correctness of the PVS theory embedding it. Therefore,

the proof obligations to be checked are just the type correctness conditions (TCCs) generated by the PVS

2In B, lowercase parameters, as lifetime, are assumed to be scalars.
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type system, and so it is possible to use the automation provided by the PVS type-checker and theorem

prover. The type correctness conditions generated for the PVS embedding of a B machine guarantee that

the initial state satis�es the invariant and that the invariant is preserved by the operations.

PVS generates four TCCs for the machine Dispenser in PVS. All of them are automatically discharged

by the theorem prover. For instance, the TCC corresponding to the initialization clause is

init_TCC1 :

|-------

f1g (8 (self):

self = (# dstate := unstocked, given := 0 #) )

0 � lifetime)

The embedding that we have described corresponds to a shallow structural embedding. That is, meta-

theoretical properties about the abstract machine notation cannot be proved. It has been completely imple-

mented by a front-end tool called PBS [28]. An alternative deeper embedding has been proposed in [9]. That

work formalizes the generalized substitution mechanism of the B-method in the higher-order logic of Coq

and PVS. In this case, it is possible to verify meta-theoretical properties about generalized substitutions.

3.4. The PBS System. PBS works like a compiler. It takes as input a �le m.bps containing an

abstract machine and generates its corresponding embedding as a PVS theory in the �le m.pvs. We have

rewritten several examples of abstract machines from [1,25,29] in PBS. The results obtained are satisfactory

according to our expectations: trivial type conditions are discharged automatically by the type checker of

PVS, and most of the other proof obligations can be solved by the automated decision procedures and

strategies provided by its theorem prover.

Table 3.1 summarizes one of these developments. Client, Product, and Invoice are part of an invoice

system developed in [1]. The example provides the basic functionality of a data processing system. During

the development, the type checker of PVS allowed us to �nd some minor errors in the speci�cation given

in [1].

Table 3.1

Metrics of Some Examples

Machine PBS PVS theory TCCs Auto

(in lines) (in lines) proved

Client 56 83 12 100%

Product 66 92 18 83%

Invoice 125 166 48 87%

B�uchi [11, 12] describes a prototypical banking application implemented in two commercial tools sup-

porting the B-method: Atelier B from Steria and the B-Toolkit from B-Core. Bank is the largest machine of

that system, and we have rewritten it in PBS. In Table 3.2, we compare our metrics for this example with

those given by B�uchi.3

The di�erence between the size of the �les is due to the fact that many properties are attached to the

types of the variables and parameters in the PBS speci�cation and therefore need not be repeated in the

3For these developments we are using PVS Version 2.3.
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Table 3.2

Comparison Between B and PBS Machines

Machine File length Proof Auto

(in lines) obligations proved

Bank in PBS 232 47 94%

Bank in B 362 49 95%

invariant and the pre-conditions to the operations, making the speci�cation shorter. The proof obligations of

the PBS and B machines do not correspond one-to-one either: recall that proof obligations in PBS machines

are generated by the type checker of PVS, which is able to solve some type conditions internally, and to

subsume some type conditions in others.

A feature introduced in PVS Version 2.3 allows PVS \ground terms" (i.e., executable de�nitions ap-

plied to concrete data) to be evaluated via compilation into Lisp. The compiler (due to N. Shankar) uses

sophisticated static analysis to eliminate some of the ine�ciencies of applicative programs, so that compiled

PVS executes extremely rapidly. Combined with the re�nement mechanism of the B-Method, this provides

good support for rapid prototyping, testing, and code generation. For example, by re�ning the PVS choice

function that interprets the ANY construct of B into a linear search, we obtain a rapid prototype for the

B-Bank that can perform many thousand Bank operations (create an account, make a deposit, perform a

balance enquiry, etc.) per second.

PBS and some of the examples that we have developed are available electronically at: http://www.csl.

sri.com/~munoz/src/PBS.

4. Tabular Representations. Several methods for documentation and analysis of requirements make

some use of tabular speci�cations. These include methods such as SCR and CoRE that are derived from

the \four variable model" of Parnas [35], the RSML notation of Leveson [26], and the decision tables of

Sherry [43]. All these methods can be considered as having two levels of \structure" above their base logic:

the top level provides the attributes that are unique to each method, but the lower level is broadly similar

across all of them: it is the use of tables to de�ne functions by cases. A simple example is the following

de�nition of the function sign(x), which returns �1; 0; or 1 according to whether its integer argument is

negative, zero, or positive.

x < 0 x = 0 x > 0

sign(x) = �1 0 +1

This is an example of a piecewise continuous function that requires de�nition by cases, and the tabular

presentation provides two bene�ts.

� It provides a visually attractive presentation of the de�nition that eases comprehension.

� It makes the cases explicit, thereby allowing checks that none of them overlap and that none have

been forgotten.

The checks for forgotten and overlapping cases generate proof obligations that have been shown to

be a potent tool for error detection [20].

The structural properties of tables interact with well-de�nedness concerns for the underlying logic, as

seen in the following table from [33, Figure 1] where the applications of the (real-valued) square root function
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in the second and third rows can only be shown to be well-de�ned (that is, to have nonnegative arguments)

when the corresponding row constraints are taken into account.

y = 27 y > 27 y < 27

x = 3 27 +
p
27 54 +

p
27 y

2 + 3

x < 3 27 +
p

� (x � 3) y +
p

� (x � 3) y
2 + (x � 3)2

x > 3 27 +
p
x � 3 2 � y +

p
x � 3 y

2 + (3 � x)2

Another interaction is seen when tables allow \don't care" and blank entries (which must be shown to

be unreachable).

An example of the latter is

the quotient lookup table for

an SRT divider shown at right.

The notorious Pentium FDIV bug

was due to bad entries in simi-

lar table. The triangular-shaped

blank regions at top and bottom

of these tables are never refer-

enced by the division algorithm;

the Pentium error was that cer-

tain entries believed to be in this

inaccessible region, and contain-

ing arbitrary data, were, in fact,

sometimes referenced during ex-

ecution [37]. Proof obligations to

show that such regions truly are

unreachable can help avoid such

errors [27, 39].

Notice that the logic required

to provide an interpretation for

tables with blank entries must be

one that provides either partial

functions, or dependent typing.

000 001 010 011 100 101 110 111

01010 2

01001 2 2 2

01000 2 2 2 2

00111 2 2 2 2 2 2

00110 2 2 2 2 2 2 2

00101 2 2 2 2 2 2 2 1

00100 2 2 2 2 c 1 1 1

00011 2 c 1 1 1 1 1 1

00010 1 1 1 1 1 1 1 1

00001 1 1 1 1 e 0 0 0

00000 0 0 0 0 0 0 0 0

11111 0 0 0 0 0 0 0 0

11110 �1 �1 d d 0 0 0 0

11101 �1 �1 �1 �1 �1 �1 �1 �1

11100 a b �1 �1 �1 �1 �1 �1

11011 �2 �2 �2 b �1 �1 �1 �1

11010 �2 �2 �2 �2 �2 �2 b �1

11001 �2 �2 �2 �2 �2 �2 �2 �2

11000 �2 �2 �2 �2 �2 �2

10111 �2 �2 �2 �2 �2

10110 �2 �2 �2

10101 �2 �2

Parnas [34] proposes a partial term logic similar to that of Beeson [6, Section 5] for dealing with these

complexities. Parnas' approach is perfectly satisfactory, but we contend that tables are a structural element

that can be hosted, with suitable adjustments and restrictions, on almost any logic.

In particular, the predicate and dependent typing of PVS [41], although quite di�erent to Parnas' logic,

provides an adequate foundation for a very rich set of tabular constructions. The structural embedding of

tables into PVS is a shallow one that di�ers from the PBS embedding of B by being integrated directly into

PVS using an intermediate COND construct [30]. It would have been perfectly feasible to use an external

translation similar to that of PBS, but tables seemed of su�ciently general utility that we preferred a more

tightly integrated implementation. The speci�c tabular constructions of SCR, RSML, and Sherry can then

be encoded into the generic PVS tables using techniques described in [30].
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The structural embedding of tables in PVS can be compared with an alternative approach where theorem

provers have been used as back-ends to method-speci�c table analyzers. One example is RSML, where proof

obligations generated by a dedicated tool have been submitted to a BDD-based tautology checker [19],

PVS [18], and the Stanford Validity Checker (SVC) [32]. In all these cases, the back-end tools are used only

to examine proof obligations that ensure no overlapping or forgotten cases: they do not have access to other

speci�cation properties (e.g., they would not be able to state or prove that sign(x) is idempotent). With the

structural embedding in PVS, however, the full speci�cation is available for analysis; [30] describe examples

where PVS is used to analyze (by theorem proving and model checking) properties of tabular speci�cations

that extend beyond simple consistency of the tables themselves.

5. Comparison, Recommendation, and Conclusion. A formal method provides guidance and dis-

cipline in the application of formal mathematics to the processes of speci�cation, design, and implementation

of software and hardware systems. Veri�cation systems, theorem provers, and model checkers can provide

mechanized support for the analysis of such formal descriptions. If we want both method and mechanization,

there seem to be four basic choices.

� Develop mechanized support for the chosen method from the ground up. The B tools exemplify this

approach.

� Develop front-end tools for the chosen method and use existing veri�cation systems and model

checkers for back-end reasoning support. For example, the front end tools may generate proof

obligations that are submitted to a theorem prover. Some of the tools developed for RSML and

SCR exemplify this approach.

� Provide an embedding of the chosen method into the logic supported by a veri�cation system.

Embeddings of VDM in PVS and Isabelle exemplify this approach.

� Add method to an existing veri�cation system or model checker. Structural embeddings are one

way to do this: we take the structural or \method" level of the language from an existing method

and wrap it around the logic of a veri�cation system (or, dually, we take an existing method and

replace the \logic" level of its language by that of a veri�cation system). The structural embedding

of B in PVS by the PBS tool exempli�es this approach.

The \ground up" approach potentially can deliver the most seamless integration, but incurs the very high

cost of developing a customized theorem prover for the chosen method. It is not just that theorem provers

are large and complex tools, and therefore expensive to develop and maintain. The largest cost is the hidden

one of gaining the experience necessary to build an e�ective theorem prover: these systems require delicate

judgments concerning how to integrate interaction and automation, how to combine rewriting and decision

procedures, how to decide combinations of theories, how to integrate decision procedures with heuristics,

and how to combine an expressive notation with e�ective deductive support. It is no accident that the most

e�ective veri�cation systems come from groups that have been building them for a decade or more, and that

have learned from many failures.

The \back-end" approach can be an e�ective way to discharge proof obligations, but does not allow

the veri�cation system to provide any other kind of deductive support. For example, as noted, the RSML

table analyzer generates proof obligations that have been submitted to several di�erent theorem proving

components, but these tools see only the proof obligations and do not have access to the full speci�cation.

When a di�erent kind of analysis is desired|for example, checking of invariants|then a di�erent translator

and a di�erent back end tool (e.g., a model checker) may be required [13]. By contrast, the structural
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embedding of tables in PVS allows all the capabilities of PVS to be applied to the full speci�cation, including

use of its model checker to examine invariants [30].

Checking of proof obligations with a back-end tool is not without di�culties. First is the question of

compatibility between the logic of the method and that of the back-end tool. The choices are between

embedding the logic of the method in that of the tool, and simply replacing the former by the latter when

generating proof obligations. Pratten [38] describes a tool that adopts the former approach: it generates

a PVS representation of proof obligations for the B method that conform to the standard semantics of B

given in [1]. The RSML table analyzer adopts the latter approach (which can also be considered a shallow

embedding, since RSML speci�cations use a simple fragment of �rst order logic). Second is the issue of

providing an adequate formalization of all the supporting theories required for a given speci�cation. For

example, formal analysis of a program that uses a data structure to represent a graph will require access to

a formalization of some fragment of graph theory. If supporting theories are written in the notation of the

formal method, then analysis will be complicated by their embedding into the language of the veri�cation

system; also, supporting theories should generally be written in a way that supports e�ective deduction (e.g.,

by presenting de�nitions and lemmas in a form that is convenient for rewriting), and this may be contrary

to the style of the method. If the supporting theories are written directly in the language of the veri�cation

system, then the intended method is not followed to the full extent, and the speci�er must master two

di�erent speci�cation languages and styles.

Traditional shallow and deep embeddings also su�er from the drawbacks just outlined. Furthermore, the

di�culties of embedding a formal speci�cation language in a di�erent logic are greater when the full notation

is to be supported, rather than just its proof obligations. Agerholm [2] describes a shallow embedding of

VDM-SL into PVS that transforms VDM-SL constructs to similar PVS constructs, and Agerholm, Bicarregui

and Maharaj [3] describe an extension of this approach to support re�nements. Although the constructs are

often similar, they are not identical, so the semantics of the VDM-SL speci�cations are not fully preserved

by this embedding. Agerholm and Frost [4] describe an alternative embedding of VDM-SL into Isabelle;

here, the semantics are preserved but the embedding is correspondingly more di�cult.

Whenever the notation of one method is supported by the logic and mechanization of another (whether

as a back-end or by embedding), there is tension between supporting the semantics of the former vs. fully

exploiting the mechanization of the latter. And if one notation is supported by more than one tool, there is

the additional concern that each will provide slightly di�erent semantics.

Structural embeddings sidestep these concerns because they do not claim to preserve the full semantics

of the original method. A structural embedding of VDM, for example, would be similar to the �rst of the

two VDM embeddings mentioned above, except that the logic of VDM would be replaced by that of the

veri�cation system concerned, and a traditional embedding would be provided only for the outermost, or

structural level of the VDM language (e.g., its notions of state and of re�nement). Of course, the resulting

system would not support true VDM any more than PBS supports true B, and this would be a fatal defect

for some users. However, we believe that others will value the methodological contributions of VDM, or B,

more than the idiosyncrasies of their logics and would be happy to trade those logics for others in return for

better automated support of their preferred method.

There are some potential di�culties, however, to this approach. In the �rst place, even quite good

veri�cation systems are not uniformly e�ective, and the encodings produced by structural embeddings may

take them into areas where they perform poorly. For example, one of the proof obligations generated by
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the RSML checker caused PVS to go into an apparently endless computation [18] (this was a back-end

application rather than a structural embedding but the problem would be the same in either case). In fact,

PVS had discovered that the formula was not a propositional tautology within a couple of seconds (which

is all the user wanted to know), and then spent the next several days trying to calculate a minimal set of

subgoals to return to the user (there were well over 1,000). Design choices made in the expectation that the

user is conducting an interactive proof of a human-generated conjecture may be inappropriate when dealing

with formulas generated by mechanical translation.

A related problem is that most interactive veri�cation systems assume that a human is guiding the

process, and they therefore provide only rudimentary interfaces for other programs. A deeper manifestation

of the same design philosophy is the monolithic, closed nature of most veri�cation systems: it is almost

impossible for outside programs to interact with their components or to query their internal data structures,

and correspondingly di�cult to create customized capabilities.

Our recommendation (which is hardly original) is that veri�cation systems should be restructured into

open collections of components with well-de�ned application programming interfaces (APIs) that allow other

programs to invoke their capabilities. A cluster of components interacting through a shared intermediate

language might be a suitable overall architecture.4 A front-end providing structural embedding for some

formal method could then communicate with the veri�cation system through its intermediate language and

its APIs.

Some embedding tools have already adopted a similar architecture, but with only monolithic veri�cation

systems connected to their intermediate languages. Gravell and Pratten [16] describe a tool that automates

conventional embedding of a formal notation within the logic of a veri�cation system. The tool, called

JavaLIL, has been used for the embedding of Z speci�cations into the higher-order logics of PVS and

HOL [15]. Gravell and Pratten justly bemoan di�culties caused by the monolithic, closed character of the

veri�cation systems used. In a similar vein, Jacobs et al. [21, 22] describe a tool called LOOP to support

embeddings of object oriented languages in general-purpose veri�cation systems.

Structural embedding does not serve the same ends as these tools: its purpose is not to support the

full language of an existing formal method, but to capture just its methodological attributes and to support

those in conjunction with the language of an existing veri�cation system. We believe that those for whom

methodology and mechanized support are more important than the authentic language of a speci�c formal

method may �nd that a structural embedding provides a cost-e�ective way to achieve their goals.

Of course, structural embedding does not solve all the problems of providing e�ective automated sup-

port for formal methods. There is more to a method than just its deductive aspects (although deductive

support is the sine qua non of truly formal methods): a fully supported method also supplies automated

assistance in documentation and traceability, prototyping and code development, testing and validation, and

the project management that ties all these together. We would hope that these capabilities could be created

by customizing (or, if necessary, developing) generic tools that support these functions, and that such generic

tools could be incorporated in the open architecture described previously.

Acknowledgments. The authors would like to thank N. Shankar and the anonymous referees for
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4This is the approach adopted by the SAL (Symbolic Analysis Laboratory) project at SRI, Berkeley and Stanford. However,

SAL is intended to promote cooperative use of complete tools such as model checkers and theorem provers, not the components

of such tools; its focus is the use of abstraction in analysis of concurrent systems represented as transition systems.
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